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Goals
Physics program driven goals of tracking simulations:

Momentum resolution
• Upsilon program requires σmass for Upsilon of < 100 MeV

• Determined by decay electron momentum resolution at 5 - 10 GeV/c
• Jet physics program requires σpT ~ a few percent at ~ 40 GeV/c

DCA resolution
• Heavy flavor tagged jets require σDCA < 100 μm (smaller the better!)

Single track efficiency - important for multi-track measurements
• Heavy flavor tagged jets require multi-track measurements
• Upsilons require di-electron measurements

Pattern recognition
• Fake tracks in Au+Au        background noise in jet measurements
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Tracking simulations
All results shown here use a model where each tracking detector 
consists of uniform cylindrical tracking layers of sensitive material and 
uniform cylindrical layers representing inactive support material. 

Silicon trackers:
• Layer of sensitive Si divided into pixels (MAPS) or strips (INTT)
• Layer of Cu to make up the total average thickness

TPC
• Layer of inactive material for inner field cage
• layer of inactive gas from 20-30 cm radius
• 60 layers of active gas divided into “voxels” of 1.5 mm x 1.7 mm
• layer of inactive material for outer field cage
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Layer Type Radius 
(cm)

active 
thickness

total 
thickness

(X0)
cell 

pitch 

cell 
length 
(in Z)

0 MAPS 2.3 50 μm 0.3% 20 μm 20 μm
1 MAPS 3.2 50 μm 0.3% 20 μm 20 μm
2 MAPS 3.9 50 μm 0.3% 20 μm 20 μm
3 Si strip 6.0 120 μm 1% 80 μm 1.2 cm
4 Si strip 8.0 120 μm 1% 80 μm 1.2 cm
5 Si strip 10.0 120 μm 1% 80 μm 1.2 cm
6 Si strip 12.0 120 μm 1% 80 μm 1.2 cm

7-67*+ TPC gas 30-80 cm 50/60 cm 1%+0.2%
+1% 1.5 mm 1.7 mm
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Tracking active layers

*TPC layer counts of 30 and 48 tested, no performance degradation
+TPC gas volume also includes dead area from 20-30 cm radius



MAPS pixel simulations
MAPS pixels (28 μm x 28 μm) not isolated from each other
• Electrons will be shared by multiple pixels
• This improves the position resolution

Charge sharing not yet included in the simulation 
• Most hits in sims are single pixel
• Estimated effective position resolution is 20 μm / √12
• So the pixel size is set to 20 μm in simulation 

Active depth of pixels is 19 μm
• For historical reasons, we use 50 μm in simulation
• But we adjust thresholds to match performance expectations 

from ALICE experts
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TPC simulations
Electron drift and diffusion in gas
Uses measured parameters for T2K gas:  Ar (95%) CF4 (3%) isobutane (2%)
We plan to swap 95% Ar to 95% Ne  

• Less than 10% change in diffusion and other properties

Readout plane
Longitudinal diffusion (+ tilt) smears drift distance, preamp smears time - add in quadrature
Want charge on 3 readout pads - pad size set by transverse diffusion
Cluster 3 readout pads and 5 time bins when track crosses one “layer”

Space charge distortion:
Size of effect from simulations using formulae from Rossiger thesis (ALICE calculations) 
Ratios of maximum distortion to corrected precision from: 
• Actual performance in STAR, simulations in ALICE

STAR uses analytic calculation scaled by luminosity, ALICE claims better ratio
Used STAR ratio as our default - applied as offset and as sigma
Also studied making factor worse, got little degradation
We get small space charge distortion using two tricks:
• Operate in zone favoring lowest ion back flow (trade off against dE/dx performance)
• Put entrance of field cage at 20 cm, moves max distortion point outside tracking volume

• 3 cm distortion at 20 cm drops to 3 mm at 30 cm (20 cm at inner field cage for ALICE)
Intermediate tracker will allow us to check distortion corrections (not taken credit for here)
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Tracking software
Start with G4 hits with energy loss
• Digitize cell energy, apply threshold
• Cluster cell hits, apply threshold, estimate position uncertainties
• Clusters are input to tracker

Track:
• Hough transform to find tracks in helix parameter space
• Kalman filter to fit tracks
• Ghost rejection to reject duplicate tracks with poorer χ2 

Evaluation module to gather and crosslink diagnostic information
• Truth hits 

• With link to truth track
• Truth tracks 
• Reconstructed track details 

• With link to dominant truth track
• Reconstructed clusters

• With links to associated truth hits, truth track, reconstructed 
track
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Performance simulations with 
Hijing + embedded pions

Central Hijing events (0-4 fm) +100 embedded pions each.

Embedded pions
• pT = 0.5 - 50 GeV/c in steps of 0.5 GeV/c.
• pT and DCA (bend plane) resolution plots  

• embedded pion tracks only
• Single track efficiency plots 

• embedded pions only, using a 4σ cut on reconstructed pT.

Hijing tracks
• DCA distributions and track purity plots (Hijing tracks only).
• Track purity plots (Hijing tracks only)
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DCA resolution 

embedded pions only
central Hijing
+ 100 pions/event

quality < 1.5
dca2d < 1 mm
dcaZ < 1 mm

9

Easily exceeds sPHENIX 
specification of < 70 μm

T
p

0 5 10 15 20 25 30 35 40

 d
ca

2d
∆

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

MAPS(3)+INTT(4)+TPC(60)

pT = 0.5-1.0 GeV/c     σDCA = 40 μm 
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embedded pions only
central Hijing
+ 100 pions/event

quality < 1.5
dca2d < 1 mm
dcaZ < 1 mm

Momentum resolution 
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MAPS(3)+INTT(4)+TPC(60)
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Single track efficiency 

embedded pions only
central Hijing
+ 100 pions/event

quality < 1.5
dca2d < 1 mm
dcaZ < 1 mm

Algorithm:
Loop over truth tracks
• Find matching reconstructed track
• Check if reconstructed pT < 4σ from truth

Record fraction of successful matches
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Purity comparison (Hijing tracks only) 

MAPS(3) + INTT(4) + TPC(60)

Fake tracks at high pT are low 
pT tracks reconstructed with 
incorrect momentum

Start to see evidence of a low 
rate of fake tracks at higher pT 

Algorithm: 
Loop over reconstructed tracks  
• Check reconstructed track pT 

is within 4σ of truth 
Record fraction of successes
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Upsilon performance 
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MAPS(3)+INTT(4)+TPC(60)

Mass resolution at Upsilon mass is
80 MeV

Easily exceeds our specification for 
mass resolution of 100 MeV

Yields for 10 weeks p+p:

Υ(1S)  8800
Υ(2S)  2200
Υ(3S)  1160
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B-jet tagging performance 
Plot of b-jet purity vs efficiency for large DCA track counting method
Vary DCA cut, use truth information to map out b-jet purity vs efficiency
• 30% efficiency at 70% b-jet purity
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Large DCA methods:

Secondary vertex finding method - uses 
RAVE (Reconstruction in an Abstract 
Versatile Environment) to find secondary 
vertices
• Comparable performance to 2-track 

cut of large DCA method



Jet substructure performance 
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The ability to study jet substructure  
depends on 
• Good pattern recognition at high 

multiplicity
• Acceptable momentum resolution at 

very high momentum
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We are still working on optimizing 
the tracker performance in high 
multiplicity events



Event pileup 
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<< +/- 100 ns   

+/- 14 μs (340 beam crossings)

+/- 2 μs (37 beam crossings)

TPC has ~ 6 cm / μs drift velocity, integrates many beam crossings
Intermediate tracker resolves 1 beam crossing
Reject out of time track stubs in TPC and MAPS by
• Track χ2

• Intermediate tracker confirmation 

Simulations code has been modified to include out of time events
Initial results w/o intermediate tracker positive, studies are ongoing



Future plans
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Inner barrel
cylinder maps
ladder maps

MAPS cylinder cell model       MAPS ladders
ALICE ITS upgrade staves (inner, middle, outer) imported into sPHENIX
All associated coding completed, runs with existing tracker 
• Takes only 1 hit per layer
• Differing material for each track not accounted for
• But not so bad anyway!

Future: 
• More flexible tracking to handle multiple hits per layer

• GenFit being tested
• Make material map available to tracker
• Multi-vertexing (RAVE) - implemented, being tested
• Ladder model for intermediate tracker 

• implemented for an earlier version, needs ladder geometry updated



Summary
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We have performed simulations to evaluate the performance of a: 
• 3 layer MAPS inner barrel
• 4 layer intermediate silicon strip tracker
• TPC outer tracker (active radius 30-78 cm)

 
We obtain:
• 80 MeV mass resolution for the Upsilon
• DCA resolution of < 27 μm for pT > 1.0 GeV/c tracks
• Excellent pattern recognition in central Au+Au Hijing events
• Good momentum resolution at high pT for jet substructure studies
• Single track efficiency of ~ 90%

The tracker performance leads to:
• Excellent mass resolution and efficiency for Upsilon measurements
• Excellent efficiency vs purity for b-tagged jets
• Low fake rate at high occupancy for jet substructure measurements 



Backup
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